Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Variation in Mutation Spectra Among CRISPR/Cas9 Mutagenized Poplars.

Identifieur interne : 000C08 ( Main/Exploration ); précédent : 000C07; suivant : 000C09

Variation in Mutation Spectra Among CRISPR/Cas9 Mutagenized Poplars.

Auteurs : Estefania Elorriaga [États-Unis] ; Amy L. Klocko [États-Unis] ; Cathleen Ma [États-Unis] ; Steven H. Strauss [États-Unis]

Source :

RBID : pubmed:29868058

Abstract

In an effort to produce reliably contained transgenic trees, we used the CRISPR/Cas9 system to alter three genes expected to be required for normal flowering in poplar (genus Populus). We designed synthetic guide RNAs (sgRNAs) to target the poplar homolog of the floral meristem identity gene, LEAFY (LFY), and the two poplar orthologs of the floral organ identity gene AGAMOUS (AG). We generated 557 transgenic events with sgRNA(s) and the Cas9 transgene and 49 events with Cas9 but no sgRNA, and analyzed all events by Sanger Sequencing of both alleles. Out of the 684 amplicons from events with sgRNAs, 474 had mutations in both alleles (77.5%). We sequenced both AG paralogs for 71 events in INRA clone 717-1B4 and 22 events in INRA clone 353-53, and found that 67 (94.4%) and 21 (95.5%) were double locus knockouts. Due partly to a single nucleotide polymorphism (SNP) present in the target region, one sgRNA targeting the AG paralogs was found to be completely inactive by itself (0%) but showed some activity in generating deletions when used in a construct with a second sgRNA (10.3-24.5%). Small insertion/deletion (indel) mutations were prevalent among mutated alleles of events with only one sgRNA (ranging from 94.3 to 99.1%), while large deletions were prevalent among alleles with two active sgRNAs (mean proportion of mutated alleles was 22.6% for small indels vs. 77.4% for large indels). For both LFY and AG, each individual sgRNA-gene combination had a unique mutation spectrum (p < 0.001). An AG-sgRNA construct with two sgRNAs had similar mutation spectra among two poplar clones (p > 0.05), however, a LFY-sgRNA construct with a single sgRNA gave significantly different mutation spectra among the same two clones (p < 0.001). The 49 empty vector control events had no mutations in either allele, and 310 potential "off-target" sequences also had no mutations in 58 transgenic events studied. CRISPR/Cas9 is a very powerful and precise system for generating loss-of-function mutations in poplars, and should be effective for generating reliably infertile trees that may promote regulatory, market, or public acceptance of genetic engineering technology.

DOI: 10.3389/fpls.2018.00594
PubMed: 29868058
PubMed Central: PMC5949366


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Variation in Mutation Spectra Among CRISPR/Cas9 Mutagenized Poplars.</title>
<author>
<name sortKey="Elorriaga, Estefania" sort="Elorriaga, Estefania" uniqKey="Elorriaga E" first="Estefania" last="Elorriaga">Estefania Elorriaga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klocko, Amy L" sort="Klocko, Amy L" uniqKey="Klocko A" first="Amy L" last="Klocko">Amy L. Klocko</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29868058</idno>
<idno type="pmid">29868058</idno>
<idno type="doi">10.3389/fpls.2018.00594</idno>
<idno type="pmc">PMC5949366</idno>
<idno type="wicri:Area/Main/Corpus">000E02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E02</idno>
<idno type="wicri:Area/Main/Curation">000E02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E02</idno>
<idno type="wicri:Area/Main/Exploration">000E02</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Variation in Mutation Spectra Among CRISPR/Cas9 Mutagenized Poplars.</title>
<author>
<name sortKey="Elorriaga, Estefania" sort="Elorriaga, Estefania" uniqKey="Elorriaga E" first="Estefania" last="Elorriaga">Estefania Elorriaga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klocko, Amy L" sort="Klocko, Amy L" uniqKey="Klocko A" first="Amy L" last="Klocko">Amy L. Klocko</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In an effort to produce reliably contained transgenic trees, we used the CRISPR/Cas9 system to alter three genes expected to be required for normal flowering in poplar (genus
<i>Populus</i>
). We designed synthetic guide RNAs (sgRNAs) to target the poplar homolog of the floral meristem identity gene,
<i>LEAFY</i>
(
<i>LFY</i>
), and the two poplar orthologs of the floral organ identity gene
<i>AGAMOUS</i>
(
<i>AG</i>
). We generated 557 transgenic events with sgRNA(s) and the Cas9 transgene and 49 events with Cas9 but no sgRNA, and analyzed all events by Sanger Sequencing of both alleles. Out of the 684 amplicons from events with sgRNAs, 474 had mutations in both alleles (77.5%). We sequenced both
<i>AG</i>
paralogs for 71 events in INRA clone 717-1B4 and 22 events in INRA clone 353-53, and found that 67 (94.4%) and 21 (95.5%) were double locus knockouts. Due partly to a single nucleotide polymorphism (SNP) present in the target region, one sgRNA targeting the
<i>AG</i>
paralogs was found to be completely inactive by itself (0%) but showed some activity in generating deletions when used in a construct with a second sgRNA (10.3-24.5%). Small insertion/deletion (indel) mutations were prevalent among mutated alleles of events with only one sgRNA (ranging from 94.3 to 99.1%), while large deletions were prevalent among alleles with two active sgRNAs (mean proportion of mutated alleles was 22.6% for small indels vs. 77.4% for large indels). For both
<i>LFY</i>
and
<i>AG</i>
, each individual sgRNA-gene combination had a unique mutation spectrum (
<i>p</i>
< 0.001). An
<i>AG</i>
-sgRNA construct with two sgRNAs had similar mutation spectra among two poplar clones (
<i>p</i>
> 0.05), however, a
<i>LFY</i>
-sgRNA construct with a single sgRNA gave significantly different mutation spectra among the same two clones (
<i>p</i>
< 0.001). The 49 empty vector control events had no mutations in either allele, and 310 potential "off-target" sequences also had no mutations in 58 transgenic events studied. CRISPR/Cas9 is a very powerful and precise system for generating loss-of-function mutations in poplars, and should be effective for generating reliably infertile trees that may promote regulatory, market, or public acceptance of genetic engineering technology.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29868058</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Variation in Mutation Spectra Among CRISPR/Cas9 Mutagenized Poplars.</ArticleTitle>
<Pagination>
<MedlinePgn>594</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.00594</ELocationID>
<Abstract>
<AbstractText>In an effort to produce reliably contained transgenic trees, we used the CRISPR/Cas9 system to alter three genes expected to be required for normal flowering in poplar (genus
<i>Populus</i>
). We designed synthetic guide RNAs (sgRNAs) to target the poplar homolog of the floral meristem identity gene,
<i>LEAFY</i>
(
<i>LFY</i>
), and the two poplar orthologs of the floral organ identity gene
<i>AGAMOUS</i>
(
<i>AG</i>
). We generated 557 transgenic events with sgRNA(s) and the Cas9 transgene and 49 events with Cas9 but no sgRNA, and analyzed all events by Sanger Sequencing of both alleles. Out of the 684 amplicons from events with sgRNAs, 474 had mutations in both alleles (77.5%). We sequenced both
<i>AG</i>
paralogs for 71 events in INRA clone 717-1B4 and 22 events in INRA clone 353-53, and found that 67 (94.4%) and 21 (95.5%) were double locus knockouts. Due partly to a single nucleotide polymorphism (SNP) present in the target region, one sgRNA targeting the
<i>AG</i>
paralogs was found to be completely inactive by itself (0%) but showed some activity in generating deletions when used in a construct with a second sgRNA (10.3-24.5%). Small insertion/deletion (indel) mutations were prevalent among mutated alleles of events with only one sgRNA (ranging from 94.3 to 99.1%), while large deletions were prevalent among alleles with two active sgRNAs (mean proportion of mutated alleles was 22.6% for small indels vs. 77.4% for large indels). For both
<i>LFY</i>
and
<i>AG</i>
, each individual sgRNA-gene combination had a unique mutation spectrum (
<i>p</i>
< 0.001). An
<i>AG</i>
-sgRNA construct with two sgRNAs had similar mutation spectra among two poplar clones (
<i>p</i>
> 0.05), however, a
<i>LFY</i>
-sgRNA construct with a single sgRNA gave significantly different mutation spectra among the same two clones (
<i>p</i>
< 0.001). The 49 empty vector control events had no mutations in either allele, and 310 potential "off-target" sequences also had no mutations in 58 transgenic events studied. CRISPR/Cas9 is a very powerful and precise system for generating loss-of-function mutations in poplars, and should be effective for generating reliably infertile trees that may promote regulatory, market, or public acceptance of genetic engineering technology.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Elorriaga</LastName>
<ForeName>Estefania</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Klocko</LastName>
<ForeName>Amy L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Cathleen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven H</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AGAMOUS</Keyword>
<Keyword MajorTopicYN="N">CRISPR/Cas9</Keyword>
<Keyword MajorTopicYN="N">LEAFY</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">site-directed-mutagenesis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29868058</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.00594</ArticleId>
<ArticleId IdType="pmc">PMC5949366</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W599-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Genome. 2016 Nov;9(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27902801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Jul;25(7):660-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16496153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Nov 30;16:258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26616834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2013 Oct;23(10):1229-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23958582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Apr 11;17(7):2503-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2785681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25970829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1000-1021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28079940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Aug;12(6):797-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24854982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Jul-Aug;15(7-8):593-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10487867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Aug 21;349(6250):794-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26293942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2018 Mar;233(3):1844-1859</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28430356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Dec;14 (12 ):2203-2216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27614091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2015 Mar 12;15:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25879861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2013 Oct 11;9(1):39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 May 30;344(6187):1246752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24876501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Jun;15(6):308-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20347379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Jul 6;9(7):961-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27108381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jun 19;5:11491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26089199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2016 Sep 9;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27613750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 20;5:12217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26193631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2016 Jan 28;12:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26823677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 19;6:21451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26891616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2015 Apr;32:76-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25437637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 May 9;153(4):910-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23643243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Nov;6(6):1975-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23956122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23299890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Sep 13;11(9):e0162169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27622539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Nov 27;350(6264):1101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26456528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Dec 21;63(6):1311-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1702033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 May 29;69(5):843-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1350515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Jun;61(10):2549-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2016 Sep 8;34(9):918-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27606454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2005 Sep;6(9):688-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Mar;31(3):227-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23360964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Aug;3(8):771-781</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12324613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:327-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23451779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Dev Biol. 2005;49(5-6):585-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16096967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1986;51 Pt 1:263-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3472723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 May;22(3):235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Sep;8(9):1431-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26032088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CSH Protoc. 2006 Dec 01;2006(7):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22484682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 15;30(10):1473-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24463181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W462-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Aug 18;63(4):633-646</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27499295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PCR Methods Appl. 1992 Aug;2(1):14-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1490171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Dec 09;3(12):2233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24122057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2016 Oct;25(5):561-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27012546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2010 Feb;21(1):100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19932760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Dec;20(6):685-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10652140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014;42(17):10903-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25200087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jan;42(1):115-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Apr;33(4):575-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Nutr. 2013 Jan 01;4(1):126-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23319131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2011 Sep;27(9):368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21962972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Feb 15;339(6121):823-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23287722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Apr;170(4):1917-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26864017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Nov 5;527(7576):110-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26524520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2016 Jan;242:65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26566825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Nov;44(5):619-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11198423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1951 Sep;62(3):293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14888646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Sep 5;353(6339):31-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1989 Jan;1(1):37-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2535466</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
<li>Oregon</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Elorriaga, Estefania" sort="Elorriaga, Estefania" uniqKey="Elorriaga E" first="Estefania" last="Elorriaga">Estefania Elorriaga</name>
</region>
<name sortKey="Klocko, Amy L" sort="Klocko, Amy L" uniqKey="Klocko A" first="Amy L" last="Klocko">Amy L. Klocko</name>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29868058
   |texte=   Variation in Mutation Spectra Among CRISPR/Cas9 Mutagenized Poplars.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29868058" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020